Jump to content

William J. Pietro

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

William Joseph Pietro (born 1956) is an American/Canadian research scientist working in quantum chemistry, molecular electronics, and molecular machines.

Education

Pietro was born in Jersey City, New Jersey. His education includes a B.S. in chemistry from the Brooklyn Polytechnic Institute of New York, a Ph.D. in chemistry from the University of California, Irvine, and a postdoctoral fellowship at Northwestern University.

Career

Pietro was one of the founding authors of both Gaussian and Spartan electronic structure software packages.[1][2] Pietro and co-workers Robert Hout and Warren Hehre invented the first algorithm for the high-resolution visualization of molecular orbitals.[3][4][5] Working in collaboration with John Pople and Warren Hehre, Pietro developed the first split-valence basis sets for transition metals and higher-row main-group elements.[6][7][8]

Between 1985 and 1991, Pietro was a professor of chemistry at the University of Wisconsin–Madison, where his research group pioneered the first working molecular diode.[9][10]

Pietro is a professor of chemistry at York University researching theoretical aspects of electron transfer reactions in transition metal complexes.[11][12][13][14] and the quantum dynamics of molecular[15][16][17][18][19][20] and biomolecular machines.[21][22]

References

  1. ^ GAUSSIAN, Quantum Chemistry Program Exchange, Indiana University, Bloomington, Indiana, 1984. Available today commercially through Gaussian, Inc, Wallinford, CT.
  2. ^ SPARTAN, 1993. Available commercially through Wavefunction, Inc, Irvine, CA.
  3. ^ R. F. Hout, Jr., W. J. Pietro, and W. J. Hehre, Orbital Photography, J. Comp. Chem, 4, 276, 1983.
  4. ^ A Pictorial Approach to Molecular Structure and Reactivity, R. F. Hout, Jr., W. J. Pietro, and W. J. Hehre, New York: Wiley-Interscience, 1984.
  5. ^ PHOTO-MO, Quantum Chemistry Program Exchange, Indiana University, Bloomington, Indiana, 1984.
  6. ^ M. S. Gordon, J. S. Binkley, J. A. Pople, W. J. Pietro, and W. J. Hehre, Self-Consistent Molecular Orbital Methods. 22. Small Split-Valence Basis Sets for Second-Row Elements, J. Am. Chem. Soc., 104, 2797, 1982.
  7. ^ M. M. Francl, W. J. Pietro, J. S. Binkley, D. J. DeFrees, J. A. Pople, W. J. Hehre, and M. S. Gordon, A Polarization Basis Set for Second-Row Elements, J. Chem. Phys., 76, 3654, 1982.
  8. ^ W. J. Pietro, M. M. Francl, W. J. Hehre, J. S. Binkley, D. J. DeFrees, and J. A. Pople, Self-Consistent Molecular Orbital Methods. 24. Small Supplemented Split-Valence Basis Sets for Second-Row Elements, J. Am. Chem. Soc., 104, 5039, 1982.
  9. ^ T. L. Anderson, G. C. Komplin, and W. J. Pietro, Rectifying Junctions in Peripherally-Substituted Metallophthalocyanine Bilayer Films, J. Phys. Chem., 97, 6577, 1983.
  10. ^ W. J. Pietro, Rectifying Junctions Based on Metallophthalocyanine Thin Films, Adv. Mater., 6, 239, 1994.
  11. ^ S. S. Fielder, M. C. Osborne, A. B. P. Lever, and W. J. Pietro, First Principles Interpretation of Ligand Electrochemical (EL(L)) Parameters; Factorization of the  and -Donaor and -Acceptor Capabilities, J. Am. Chem. Soc, 117, 6990, 1995.
  12. ^ S. Lu, V. V. Strelets, M. F. Ryan, W. J. Pietro, and A. B. P. Lever, Electrochemical Parameterization in Sandwich Complexes of the First-Row Transition Metals, Inorg. Chem., 35, 1013, 1996.
  13. ^ Modelling Ligand Electrochemical Parameters by Repulsion-Corrected Eigenvalues, P. Kiani, E. S. Dodsworth, A. B. P. Lever, and W. J. Pietro, J. Comp. Chem., http://doi.org/10.1002/jcc.26536, 2021.
  14. ^ W. J. Pietro and A. B. P. Lever, A Ligand Electrochemical Parameter Approach to Moleculr Design, -Donation, -Backdonation, and Other Metrics in Ruthenium Dinitrogen Complexes, Inorg. Chem., 61, 1869, 2022.
  15. ^ J. G. C. Veinot, J. Galloro, L. Pugliese, R. Pestrin, and W. J. Pietro, Surface Functionalization of Cadmium Sulfide Quantum Confined Nanoclusters. 5. Evidence of Facile Surface-Core Electronic Communication in the Photodecomposition Mechanism of Functionalized Quantum Dots, Chem. Mater., 11, 642, 1999.
  16. ^ A. A. Farah, C. Dares, and W. J. Pietro, Using a Push-Pull Azobenzene Haptan to Probe Surface-Core Electronic Communication in Surface Functionalized CdS Quantum Dots, J. Phys. Chem, invited paper, 114, 20410, 2010.
  17. ^ X. Chen., M. G. Organ, and W. J. Pietro, One-Pot Synthesis of Size-Controlled Amine-Functionalized Core-Shell Magnetic Nanoparticles for use in Microfluidic Separations, J. Nanoscience, Adv. Technol, 1, 25, 2017.
  18. ^ X. Chen., M. G. Organ, and W. J. Pietro, A Facile Controlled Preparation Method of Multifunctional Core-Shell Magnetic Nanoparticles, and their Potential Use in Microfluidic Separations, J. Nanoscience, Adv. Technol, 2, 5, 2017.
  19. ^ K. E. Edwards, O. Mermut, W. J. Pietro, and C. J. Barrett, Optical and Computational Studies of the trans – cis Reversible Isomerization of the Commercial Bisazo Dye Bismarck Brown Y., Phys. Chem. Chem. Phys., 25, 5673, 2023.
  20. ^ M. Kim, C. Hillel, K. Edwards, T. H. Borchers, O. Mermut, W. J. Pietro, and C. J. Barrett, Azo Dye Polyelectrolyte Multilayer Films Reversibly Re-soluble with Visible Light, Frontiers in Materials, 11, https://doi.org/10.3389/fmats.2024.1334863, 2024.
  21. ^ W. J. Pietro and O Mermut, A SiPM-Enabled Delayed Fluorescence Photon Counting Device: Climatic Plant Stress Biosensing, Biosensors, 12, 817, 2022.
  22. ^ Geiger Mode Single Photon Counting: An Example Exploring Delayed Fluorescence in Plants, C. W. Schruder, C. J. Barrett, W. J. Pietro, and O. Mermut, J. Chem. Ed., 100, 3991, 2023.